On the Biosynthesis of the Mycoticins, Metabolites of Streptomyces ruber

By HARRY H. WASSERMAN,* PHILLIP A. ZORETIC, and PATRICK S. MARIANO

(Department of Chemistry, Yale University, New Haven, Connecticut 06520)

Summary The biosynthesis of mycoticins A and B has been studied using labelled acetate, propionate, and methionine.

We have previously shown that mycoticin,¹[†] a neutral metabolite of *Streptomyces ruber* possessing activity against pathogenic fungi, is a mixture of two polyolefinic, polyhydroxy-macrocyclic lactones, A, $C_{36}H_{58}O_{10}$ (Ia), and B, $C_{37}H_{60}O_{10}$ (Ib).²

mycoticin B, (path B), carbons C-1 to C-32 and C-34 to C-35 might be derived from 17 acetate units with methylation taking place at C-14, C-30, and C-32. Similarly, mycoticin A biogenesis could involve a pathway utilizing propionate at C-31 to C-33 as a starter unit followed by 15 acetate units to complete the lactone skeleton (C-1 to C-33) with methylation at C-14, C-30 and C-32. Our studies were undertaken in order to differentiate among the above possibilities, and, as outlined below, are consistent with the scheme designated as path A'.

Table	1
-------	---

Labelled precursor				Mycoticin isolated (d.p.m./mg)	Specific activity ^a of mycoticin (d.p.m./mmol)	Specific incorporation (%)
Sodium [2-14C]propionate				13,429	$8{\cdot}82 imes10^{6}$	0.10
Sodium [2-14C]acetate		• •		30,935	$20{\cdot}32 imes10^{6}$	0.45
[<i>Methyl-</i> ¹⁴ C]-L-methionine				0		
[<i>Methyl-</i> ³ H]-L-methionine	••	••	••	1,747	$11.50 imes10^{5}$	0.00013

^a Since it was not possible to separate mycoticins A and B, an average molecular weight of the two was used for calculation of the specific activity. This value has an error of 1%.

In the light of earlier investigations on macrolide antibiotics,³ certain biogenetic pathways for the formation of (Ia) and (Ib) seem reasonable, *a priori*. In path A, the basic carbon skeletons (C-1 to C-33) in both pigments could be derived from three propionate units (at carbons C-13 to C-14', C-29 to C-30', and C-31 to C-33) plus 13 acetate units. Mycoticin B would then be formed by acylation at C-32, and mycoticin A by methylation at C-32. Alternatively, (path A'), mycoticin B, derived as above, could lead to mycoticin A via degradation of the C-34 + C-35 ethyl sidechain or its equivalent during the biogenesis.

In another biogenetic sequence for the formation of

Sodium [2-¹⁴C]propionate (specific activity, 3.77 mCi/mmol) sodium [2-¹⁴C]acetate (specific activity, 2.00 mCi/mmol), [methyl-¹⁴C]-L-methionine (specific activity, 11.10 mCi/mmol), and [methyl-³H]-L-methionine (specific activity, 134 mCi/mmol) were fed, respectively, to 2.5 day old cultures of S. ruber in 2% dextrose-Difco Bacto Peptone solutions. Mycoticin was isolated in each case and crystallized to constant activity (Table 1).

In order to determine the origin of the C-29 to C-34 and C-29 to C-35 portions of mycoticin A (Ia) and mycoticin B (Ib), respectively, the following degradation scheme was employed. The isolated mycoticin^{\ddagger} was ozonized in acetic

 \dagger In this discussion "mycoticin" refers to the inseparable mixture of mycoticin A and mycoticin B isolated from the mycelium of S. ruber (ATCC 3348).

 \ddagger All products obtained in this study were compared to authentic samples with respect to m.p. and mixed m.p.; t.l.c. analysis of the phenylhydrazones showed them to have identical R_F values with authentic samples.

acid,¹ reduced with Zn-HOAc-H₂O and the volatile products were steam-distilled into a saturated 2% solution of 2,4dinitrophenylhydrazine hydrochloride. The 2,4-dinitrophenylhydrazones of 2,4-dimethylpent-2-enal (IIa) (C-29 to C-34 fragment) and of 2,4-dimethylhex-2-enal (IIb) (C-29 to C-35 fragment) were separated⁴ on a column of Voclay-Betonite : Celite mixtures (22.5 g : 10.5 g) with etherhexane elution. The radioactive hydrazones were diluted with known quantities of the corresponding pure unlabelled hydrazones and crystallized to constant activity.

Labelled	2,4-DNP isolated (d.p.m./mg)				
[2-14C]Propionate				• •	20,356
		• •		••	19,153
[2-14C]Acetate					11,878
"	• •		••	••	14,756

As shown in Table 2, the 2,4-dinitrophenylhydrazones of 2,4-dimethylpent-2-enal and 2,4-dimethylhex-2-enal obtained from the propionate feeding showed specific activities of 5.94×10^6 and 5.86×10^6 d.p.m./mmol, respectively. Since these values are approximately equal and 2/3 the specific activity of the propionate-derived mycoticin (8.82×10^6 d.p.m./mmol), it appears most likely that the two propionate units comprise six carbons in the C-29 to C-33 fragments of both (Ia) and (Ib). Furthermore, these results suggest that the remaining 1/3 of the propionate activity not accounted for in the aldehydes (IIa) and (IIb) is located at C-13 to C-14' in both mycoticins.

Support for the conclusion that the units C-29 to C-33 and also C-13 to C-14' are propionate-derived is obtained from feeding experiments with labelled methionine (Table 1). The negligible incorporation of both $[methyl-^{3}H]$ - and [methyl-14C]-L-methionine shows that the C-14', C-30', and C-34 methyl groups (Ia) are not derived from this onecarbon source.

One of the most interesting aspects of the biogenesis of the mycoticins concerns the origin of the C-34 carbon in mycoticin A and the C-34 to C-35 unit in mycoticin B. As shown in Table 2, the specific activity of the 2,4-dinitrophenylhydrazone of 2,4-dimethylhex-2-enal (IIb) obtained from the sodium [2-14C]acetate feeding was found to be significantly greater $(4.52 \times 10^6 \text{ d.p.m./mmol})$ than the activity of the similarly derived DNP of 2,4-dimethylpent-2-enal (IIa) $(3.47 \times 10^6 \text{ d.p.m./mmol})$. These findings along with the observed specific activity (20.36×10^6) d.p.m./mmol) of the mycoticin mixture in the [2-14C]acetate feeding are consistent with the conclusion that mycoticin B contains 14 acetate units and mycoticin A 13 acetate units.§ According to this view, the C-34 + C-35

We thank Prof. A. I. Scott and Dr. G. T. Phillips for helpful discussions, and Miss Ute Kircheis for technical assistance.

(Received, September 22nd, 1970; Com. 1627.)

§ We have assumed that the activity in the pentenal fragment from the [2-14C] acetate feeding results from acetate to propionate conversion⁵ which should be equal for mycoticins A and B. Each acetate unit then accounts for 4.52×10^6 $-3.47 \times 10^6 = 1.05$ \times 10⁶ d.p.m./mmol. Each propionate unit contributes $1/2 \times 3.47 \times 10^6 = 1.73 \times 10^6$ d.p.m./mmol.

¹ H. H. Wasserman, J. E. Van Verth, D. J. McCaustland, I. J. Borowitz, and B. Kamber, J. Amer. Chem. Soc., 1967, 89, 1535. ² Recently, R. Bognar, B. O. Brown, W. J. S. Lockley, S. Makleit, T. P. Toube, B. C. L. Weedon, and K. Zsupan (*Tetrahedron Letters*, 1970, 471) have isolated flavofungin from *Streptomyces flavofungin* and have shown it to be a mixture of mycoticins A and B. Their

results are in complete agreement with our previous structural assignments.¹ ³ (a) A. J. Birch, Fortschr. Chem. org. Naturstoffe, 1957, 14, 186; (b) A. J. Birch, R. J. English, R. A. Massy-Westropp, M. Slaytor, and Herchel Smith, J. Chem. Soc., 1958, 365; (c) R. B. Woodward, Angew. Chem., 1956, 68, 13; (d) K. Gerzon, E. H. Flynn, M. V. Sigal, jun., P. F. Wiley, R. Monahan, and U. C. Quarck, J. Amer. Chem. Soc., 1956, 78, 6396.
⁴ For analogous separations see J. W. White, Analyt. Chem., 1948, 20, 726.

⁵ For analogous examples of acetate-propionate conversion see Z. Vanek, et al., Folia Microbiol., 1961, 6, 408; R. Bentley, Ann. Rev. Biochem., 1962, 605, and references therein.